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Abstract The use of architectural morphological analysis and generative design is an impor-
tant strategy to interpret current designs and to propose novel ones. Conventional morpholog-
ical features are defined based on qualitative descriptions or manually selected indicators,
which include subjective bias, thus limiting generalizability. The lack of public architectural
morphological datasets also leads to setbacks in data-driven morphological analysis. This study
proposed a new method for generating topology-based synthetic data via a rule-based system
and for encoding morphological information to promote morphological classification via deep
learning. A deep convolution network, LeNet, which was modified in the output layer, was
trained with synthetic data, including five spatial prototypes (central, linear, radial, cluster,
and grid). The performance of the proposed method was validated on 40 practical architec-
tural layouts. Compared to the ground truth, the proposed method provided an encouraging
accuracy of 97.5% (39/40). Interestingly, the most possible mistakes of the LeNet were also un-
derstandable according to the architect’s intuitive perception. The proposed method consid-
ered the statistical and overall characteristics of the training samples. This work
demonstrated the feasibility and effectiveness of the deep learning network trained with syn-
thetic architectural patterns for morphological classification in practical architectural layouts.
The findings of this work could serve as a basis for further morpho-topology studies and other
social, building energy, and building structure studies related to spatial morphology.
ª 2020 Higher Education Press Limited Company. Publishing services by Elsevier B.V. on behalf
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

According to Li and Han (2011), architectural design re-
quires an integrated balance of complex adaptive systems
(CAS). One solution is generative design, which focuses on
the translation and simulation of design concepts using
computational models, including decision making, linkage
construction, and design optimization. The computational
model is established based on the large amounts of data
and the extraction of rational rules to achieve novel design
proposals (Li, 2012; Soddu, 1998).

From the rationalist view, the morphological approach
proposes the idea that morphology has the potential to be
the driving force behind the urban design process (Rossi
et al., 1982). Given that architectural morphology de-
termines the spatial footprint pattern and influences the
urban fabric (Levy, 1999), many studies have linked
morphological types to the aspects of the building energy,
building interior, social effects, urban evolution, etc. For
example, a study on urban neighborhoods (Ariga, 2005)
used the morphological classification and clustering of
footprint patterns over time in order to extract evolu-
tionary patterns that result in sustainable urban neighbor-
hoods. In addition to conceptual and qualitative studies on
morphological classification, recent morphological similar-
ity studies have been carried out quantitatively by consid-
ering shape, size, spatial proportion, and other geometrical
measures.

In quantitative evaluations, researchers utilized various
morphology-to-data transmission methods by selecting and
adjusting indicators to represent morphology. For compu-
tational analysis and design, quantifying architectural
morphology and function is important in building effective
computational models. In the research on urban renewal in
Roma (Tang et al., 2019), scalar indicators (e.g., block ID,
plot area) and geometric indicators (e.g., edge length,
shape) were used to represent block morphology for
searching morphologically similar blocks. However, some
missing factors remained. This is especially true for geo-
metric information that is difficult to represent numeri-
cally, such as the composition of buildings, thus leading to
subjective bias and limited generalizability.

Deep learning1 algorithms promote new methodologies
in morphological analysis and generative design. It statis-
tically provides automatic feature extraction and learning
strategies for morphological analysis and design (Li et al.,
2019). Morphology-to-data transmission methods, such as
image data-based (RGB), numerical labeling, and semantic
segmentation (Chaillou, 2019), are dedicated to feeding
samples into neural networks with continuous and infor-
mative features. In a study of typo-morphology in Lisbon
(Gil et al., 2012), the k-means clustering algorithm was
used to classify block and street types based on prepared
plans. However, the clustering algorithm was limited in
terms of data size, because the learning algorithms
required a large number of training samples to ensure
learning accuracy. Furthermore, the data preparation
1 Deep learning uses neural networks as its main model and is widel
omous driving, speech recognition, and other fields.
phase of the proposed process was time-consuming,
because there were few shared datasets related to archi-
tectural morphology.

To develop a morphology-to-data transmission
approach for morphological classification, two sets of
obstacles were observed: (1) the availability of architec-
tural morphology dataset for inputting deep learning al-
gorithms and (2) the quantification of architectural
morphological features. In the computer science field,
feeding deep learning algorithms with synthetic data for
the recognition of actual conditions could achieve
considerable results (Srisuchinnawong et al., 2018), with
the synthetic data generated based on morphological
similarity and diversity. However, the application of syn-
thetic training data for testing practical data in the
architectural morphological field has yet to be fully
explored.

According to the previous discussion, generating syn-
thetic data based on topo-morphological similarity may
offer an opportunity to provide effective training samples
for deep learning algorithms. A fully automated feature
extraction method may overcome the drawbacks of manu-
ally selecting indicators. The pictorial processing of the
morphology could be taken as the data source for images,
so a possible method is feature mapping of the images. An
image is a 3D matrix (RGB) that contains spatial informa-
tion. For example, spatially adjacent pixels have similar
values, whereas pixels that are farther apart have little
correlation. Therefore, the spatial information of images
hides essential features that are worth extracting. Feature
mapping is a transmission from the original data to feature
vectors that contain the information of overall
characteristics.

In a convolution neural network (CNN), the feature
mapping of the images extracts features by convolution
kernels. Since its introduction in 1988, LeNet (Lecun
et al., 1998), the progenitor of CNN, has undergone
continuous improvements and is considered one of the
classic models of CNN. Neural networks are implemented
for solving problems of pattern recognition of two-
dimensional (2D) images (Krizhevsky et al., 2012) and
multiple manifolds, such as graphs and two-dimensional
(3D) models (Tom et al., 2018). Researchers have
applied the manifolds to various morphological domains,
such as style recognition (Yoshimura et al., 2019) and
architectural element classification (Yetis and Yetkin,
2018).

The current paper aims to develop a novel method for
architectural morphology-related studies. The proposed
method is a combination of the rule-based systems and
data-driven approaches, which generate and encode syn-
thetic morphological training samples for neural networks
performing in actual conditions. In this research, a deep
CNN was trained with concise feature vectors of synthetic
morphological patterns. The synthetic data were generated
by extracting the volume organization rules of architectural
spatial prototypes, taking five types as examples. Thus, the
typological similarity was integrated with the actual
www.manaraa.com
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conditions. This work further completed the classification
and prototype identification of practical architectural
spatial organization. This paper makes the following con-
tributions to the literature:

� This is an interdisciplinary study that integrates archi-
tectural design with computer science and applies the
latest deep learning techniques to the study of archi-
tectural morphological analysis.

� The proposed method effectively performs the auto-
matic generation of the architectural morphological
patterns as training samples for neural networks,
thereby reducing the difficulties in collecting data,
cleaning data, and labeling data in real applications.

� This study provides a feasible method of comprehen-
sively and automatically encoding the overall morpho-
logical characteristics with feature mapping based on
pixels, excluding artificial work on morphological in-
dicators selection, thus avoiding subjective bias.

� The previous methods working on the same tasks are
either the qualitative description or informative inde-
pendent indicators. In comparison, the proposed
approach considers both aspects simultaneously.

� The signified neural network output can be changed
arbitrarily to meet a certain demand. Therefore, the
new output can be conveniently adapted for the further
application of building energy efficiency evaluation,
building structure, and generative architectural design
projects related to spatial morphology.
2. Concept model of generative design

Two generative design approaches are taken in the
computational model construction: rule-based system and
data-driven approaches. With the rule-based system, the
architect builds a physical or mathematical simulation
model and solves specific architectural problems under
well-defined rules (Li, 2012). It is an analytical problem-
solving method that can help the architect to efficiently
complete the linkage construction and optimization steps.
In contrast, the data-driven approach creates statistical
models and mines through vast amounts of data. It solves
the problems of prediction, recommendation, and feature
extraction. Furthermore, it helps to summarize and identify
non-logical rules, such as personal preference, subjective
tendency, style definition, and hand-drawn images, which
support architects during the design decision step.

2.1. Rule-based system in generative design

Digital technology allows architectural elements to be
freely described and interconnected without losing the
systematic mapping (Hovestadt, 2010). With the rule-based
system approach, designers need to manually define and
quantify features, such as the architectural concept, the
building elements, the physical environment of the build-
ing, and the rules of the elemental association. Further-
more, such algorithms such as evolutionary algorithms,
multi-agent systems (Caiet al., 2019), and integer pro-
gramming (Hua et al., 2019), are required to match design
tasks. Then, computational models are constructed to
simulate the self-organization of architectural elements
and to achieve design generation in dynamic processes
(Tang et al., 2019).

2.2. Data-driven methods in generative design

Data-driven methods use a statistical approach to describe
and solve problems consisting of a flexible number of ele-
ments, connections, and variables (Hovestadt, 2010). Digi-
tal techniques have been widely used in architecture,
generating large amounts of precise data. For example, 3D
scanning, depth detection, and synchronous location and
mapping (SLAM) technologies have been increasingly used
along with online maps. These techniques provide archi-
tects with large amounts of data quickly and efficiently.
They also help establish a database of architectural cases
with feature information and retrieve cases with similar
features (Tang et al., 2019). With a data-driven approach,
designers need to extract features from abundant of
training data by designing a network that can support
design decision-making through data analysis methods.

2.3. Neural network in generative design

Similar to conventional feature engineering, rule-based
systems are based on pre-defined rules and translate
design rules into programming principles. It means that the
information synthesis is limited by the architect’s stock
knowledge and experiences, which may result in subjective
bias and inadequate linkage construction of design vari-
ables. In comparison, neural network algorithms can effi-
ciently parse out general features from large amounts of
data and apply those to new data in testing. Neural net-
works are used for feature extraction, prediction, and
clustering (Nielsen, 2015). However, limited by the avail-
able data, the application of the neural network in the
architecture field is restricted. Nevertheless, it is an
effective way to communicate and simulate the architec-
tural design concept by integrating the two approaches. It
supports database construction and feature extraction and
then guides the computational model to accurately corre-
late design elements and variables, ultimately completing
design evaluation and in-depth optimization.

Two key points in the research of the application of deep
learning in architecture are (1) the accessibility of training
samples and (2) the information encoding of sample fea-
tures. Previously published studies construct a training
dataset by crawling online data or manual semantic seg-
mentation, which are time-consuming and have a limited
sample size (Chaillou, 2019; Huang and Zheng, 2018; Liu
et al., 2019). This process can also generate subjective
noise. A more efficient and accurate approach is the use of
an automatic data preprocess pipeline, which can feed the
architectural morphology to the algorithms.

Fig. 1 represents the general workflow of our work. First,
five architectural spatial organization prototypes were
extracted. The architectural morphological patterns were
generated based on the prototype abstraction. Second, the
features of the generated samples were mapped into
feature vectors for the neural network input dataset. Third,
www.manaraa.com
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Fig. 1 The workflow of architectural morphological prototype classification based on neural network.

Fig. 2 Five spatial prototypes of architectural morphological organizations.

Deep CNN for morphological classification 307



Fig. 3 Generation rules and process of the five types of morphological pattern samples.
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the output layer modified LeNet was trained compared with
a simple fully-connected neural network. Finally, 40 prac-
tical architectural layouts were taken to test the perfor-
mance of the trained neural networks for morphological
prototype classification.

3. Architectural morphological pattern
generation

In the work entitled “Architecture: Form, Space, and
Order,” Cheng (2005) elaborated on the basic principles
and syntax of architectural design as a classical theory in
which the architectural space is interconnected and
combined into a coherent prototype, including central-
ized, linear, radial, clustered, and grid (Fig. 2). It reflects
the architects’ general judgment on prototype classifica-
tion of architectural layouts. We used the above-
mentioned five spatial prototypes in this work.

Training neural networks require adequate input data
in continuous features. We used algorithms, such as the
multi-agent system (Cai et al., 2019) and L-system (Chan
and Chiu, 2000), which are bottom-up methods to obtain
a community by simulating the action and the relation of
components. A technique called data augmentation is
used for enlarging the dataset by artificially adding the
variation of training samples to obtain a robust network
(Goodfellow, Bengio and Courville,2016). The
2 The L-system is a type of formal grammar. It has been used to descri
of various organisms (Source: Wikipedia).
conventional data augmentation operations, such as
rotation, mirroring, etc., are used for making minor
changes to existing datasets in order to acquire more
samples to reduce overfitting. To augment our training
samples, we used the generative method to obtain various
morphologies based on the topological similarity. We
added random function to parameters, such as direction,
radius, edge type, angle, etc. Hence, the samples are
topologically similar but different in detail in terms of
morphology, thereby ensuring the training quality. Fig. 32

shows the generation logic of the five types of morpho-
logical patterns.

1. The centralized pattern consisted of multiple basic
polygons arranged around the center point. The basic
polygon was constructed from three elements: center,
radius, and the number of sides. The centralized
morphological patterns were obtained after the triple
recursion of the basic polygons.

2. The linear patterns were generated by designing the
linear axis. The growth of the axis through the Linden-
mayer System (L-system) was simulated, starting from
the growth point, with three possible directions of
growth: forward, left, and right with certain angles. The
growth stopped if the growth point was out of the panel
or too close to the original growth point. Then, the
rooms were generated along the axis.
www.manaraa.com
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Fig. 4 Examples of generated architectural morphological patterns.

Fig. 5 Fundamental filters in convolutional operations.

Deep CNN for morphological classification 309
3. The logic for generating radial pattern axis was similar to
the centralized pattern except that the vertices were
randomly removed to obtain irregular radials.

4. In the clustered pattern, the rooms and courtyards were
simulated by rectangular multi-intelligent agents, with
both attraction and repulsion forces between each
other, thus obtaining a balanced situation.

5. The grid pattern was generated through grid agents
(constructed from the growth point and direction) with
three types of edges: thick, bilinear, and dotted. This
was done to ensure that each agent had eight morpho-
logical possibilities. Here, the growth of the grids was
based on the growth of the agents.
Fig. 4 shows examples of the five types of architectural
morphological patterns with the following details.

4. Neural network model training and
prototype classification

The application of the neural network model can be divided
into two steps. The first step involved training by simulating
the signal propagation between neurons, thus extracting
the general features of the training sample. The second
step was testing in which the trained network was applied
to the new samples. Due to the computational mechanism
of neural networks, we do not need to explicitly define the
www.manaraa.com



Fig. 6 Overview of the morphology-to-data process for generating samples.

Fig. 7 Partial visualization of the architectural morphological datasets.
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function or process for target morphology. We just need to
define the input data and output targets. In other words,
the classification of neural networks can solve such a
problem when the architectural morphology cannot be
exhausted under a particular classification due to their di-
versity and ambiguity of definition.
4.1. Morphological pattern information encoding

Based on the idea of feature mapping, the image was pro-
cessed with a “filter operation” for feature mapping in the
convolution process. The process of feature mapping can be
described as taking a certain size kernel (3 � 3 as an
www.manaraa.com
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example in Fig. 5), sliding it over the image pixels, and
performing operations, such as multiplication and accu-
mulation, to obtain a feature matrix.

In this experiment, the size of the generated morphology
sample was 448 � 448 pixels. To make the neural network
operation more efficient and to prevent the loss of image
features, the image information was encoded in this
experiment by sweeping the image in two layers with filters
Fig. 8 Structure of the origina
of size 4 � 4 and stride 4. As the samples were in black and
white, we encoded them based on a single channel, taking
the brightness intensity average and finally encoding the
architectural morphology information in the sample as
28 � 28 feature mapping data (Fig. 6). We took 1000
generated samples for each type of spatial organization
pattern in the experiment. The spatial prototypes were
labeled by 0e4 according to the morphological pattern. The
www.manaraa.com
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Fig. 9 Gradual reduction of learning errors and recognition failure during training.
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ground truth number was the goal for the neural network
output to be trained as close as possible. Therefore, the
dataset featuring the architectural morphology was con-
structed from 5000 (28 � 28) encoded feature data with
labels. Fig. 7 shows a visualization of the architectural
morphology encoded information.

4.2. Training of LeNet

The basic function for weights and deviations between
neural layers is expressed as formula (1), where A(n) in-
dicates neurons in the nth neural layer, W(n) indicates the
weight propagated between each neuron and the previous
neural layer, b(n) indicates the bias propagated between
each neuron and the previous neural layer, and X indicates
the data in the previous layer. The backpropagation of er-
rors in the neural network is expressed as formula (2),
where E indicates the error between estimation and target,
and s indicates the learning rate.

AðnÞZX$W ðnÞ þ bðnÞ ð1Þ

DWZs
vE

vW
ð2Þ

The neural network training continuously optimizes
weights (W) and bias (b) using gradient descent and error
inverse propagation method, so that the distance (E) be-
tween the output and the target becomes progressively
smaller. In this way, the output gradually gets closer to the
optimization goal. The neural network testing uses the W-b
matrix to obtain the training step and then operate with the
3 It contains thousands of black and white images of handwritten 0e
written numbers. The accuracy of recognition is often used to measure
test data. The output of the five neurons in the output layer
represents the probability of the corresponding prototype.

We used a deep convolution neural network, LeNet,
which was designed for training with MNIST3dataset. The
original LeNet structure has a total of 11 layers, including
two convolutional layers. The input layer size was 28 � 28
with one channel, as the samples were black and white
images. The output layer size was 10 with one channel. As
the output layer of this experiment required 5 neurons,
instead of 10, therefore, we took 1e8 layers of the LeNet.
Then, we added three new layers: a linear layer, a softmax
layer, and an output layer, with five neurons to constitute
the neural network adopted for this experiment (Fig. 8).
This was implemented on Mathematica (Wolfram Research,
Champaign), and we used the ADAM optimizer. The batch
size was 100. In less than 20 s, the neural network was
trained after 25 rounds. Fig. 9 illustrates the gradual
decrease in recognition failure as the number of training
iterations increases.

4.3. Testing of the trained neural networks for
morphological prototype classification

A total of 40 practical building layouts were selected to test
the performance of the neural network. These samples
were chosen from the reference, and the author used these
examples to illustrate the spatial organization prototypes.
Therefore, each sample was labeled with the ground truth
according to the book. Due to the diversity of architectural
morphology, some samples could be considered to belong
to more than one prototype depending on the architect’s
www.manaraa.com
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different interpretation. As a comparison study, we tested
the 40 samples through a simple, trained, fully-connected
neural network with three layers (an input layer, a hidden
layer, and an output layer) and the trained LeNet.
Fig. 10 The outputs of the simple neural network and the LeNe
The neural network predicted the respective probabili-
ties of five output neurons and ultimately took the highest
probability as the output result. The result’s accuracy re-
flects the quality of the synthetic training samples and the
www.manaraa.com
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performance of the neural networks. The size of the neural
network input and output can be modified. The results can
be used as conditions for further programs, such as concept
strategy and case retrieval.

5. Results and discussion

The fully-connected neural network correctly generated
outputs in 25 out of 40 samples (Fig. 10). The deep con-
volutional neural network LeNet identified 31 out of 40
samples correctly, compared to the ground truth labels.
The failed case involved identifying a radial prototype, case
19, as a linear prototype (Fig. 10). The deep convolutional
neural network performed better than the simple fully-
connected neural network, as it had a more developed
structure.

Interestingly, we can intuitively see that case 19 can be
classified as a linear prototype as it shows linear
morphology. Furthermore, some other samples could be
Fig. 11 Most possible mistakes of the LeNet comp
classified into more than one prototype, which is also re-
flected in the LeNet output. For example, some architects
would take case 1 as a clustered prototype, although it is
labeled as a centralized prototype; cases 15, 16, and 20
could be taken as a linear prototype while being labeled as
a radial prototype; and cases 24 and 25 have the possibility
of being the centralized prototype while being labeled as a
clustered prototype.

Fig. 11 shows the most possible mistake of the LeNet
compared with the architect’s definition variety, taking the
eight cases with high secondary probability output as ex-
amples. For example, in case 1, the probability of a
centralized prototype is 0.51, whereas that of a clustered
prototype is 0.47; in case 20, the probability of a radial
prototype is 0.62, whereas that of the linear prototype is
0.37. This is a surprising outcome wherein the neural net-
work’s output in terms of architectural morphological pro-
totype shows high accuracy and similarity mistakes with
architects. Architects take more than one possibility when
www.manaraa.com
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classifying certain samples, and the LeNet reflects a similar
decision process.

As the training samples were generated based on a
specific prototype, they integrated both topological simi-
larity and morphological diversity simultaneously.
Compared with the conventional data augmentation
methods, the proposed method provides a more flexible
and diverse enhanced data source. We transmitted the
448 � 448-pixel image to 28 � 28 feature mapping data,
thus boosting the efficiency of the neural network. In the
calculation process of the LeNet, the input data were
calculated through kernels of the n � n matrix containing
weight values. This is a robust technique for image pro-
cessing. In other words, the neural network is sensitive to
the distribution of the pixels in the image. For these rea-
sons, the neural networks performed well in classification
based on the generated samples.

Compared with other quantitative classification ap-
proaches, encoding morphology into feature data based on
feature mapping is a fully automated method that includes
several aspects of the morphological criteria without the
need to balance the weights of indicators. Training with
synthetic data saves effort in collecting, selecting, and la-
beling data. The training target could also flexibly perform
a certain task; for example, the training labels could be
modified to represent the building energy performance,
structural type, etc.

The limitations of the proposed method are related to
the highly automated process, which increases the diffi-
culties of emphasizing the influence of a certain aspect by
adjusting the weights. First, the generated samples could
be more detailed, and more types are needed to achieve a
trained network and architectural morphology with higher
accuracy and better diversity, respectively. Second, given
that the samples are image-based and only contains 2D
information, 3D information like building height and
building form, may be lost. This drawback could be over-
come by adding one more dimension, such as the grayscale
dimension in the picture to represent the building height or
the use of voxels instead of pixels. Third, for other tasks
that need different training samples, the generative system
should be redeveloped in order to obtain task-oriented
synthetic data.
6. Conclusion

Computers can rapidly perform 4- or even 10-digit opera-
tions, because they are extremely powerful in terms of
following basic instructions. However, the human brain can
easily distinguish information contained in pictures, such as
faces, cats, and furniture. In comparison, such a task is
quite difficult for a computer (Rashid, 2016). In relation to
this, one of the goals of neural networks is to solve non-
explicit instruction problems, such as morphological
analysis.

Morphological similarity analysis and classification
represent a useful analysis framework in many studies, such
as those in the typo-morphological, historical evolution,
predesign contextualization, and building energy
performance fields. The quantitative descriptions of
architectural morphology provide a baseline for in-depth
building interpretation and have received attention in
morphological studies in recent years. Conventional
methods based on an intuitive perspective of forms often
consist of statistical calculations, weight decisions, and
indicator selections, which are used for the integrated
description of a building. It leads to subjective bias and may
greatly be influenced by the researcher’s knowledge.

Morphological analysis is promoted by the recent success
of deep learning methods in which the intrinsic features
can be extracted/learned automatically from a large
amount of data. The morphological features are quantified
by high-dimensional feature data through a deep CNN,
which contains the overall information of the morphological
characteristics, rather than one-to-one correlations of the
features.

We applied a rule-based system to generate morpho-
logical patterns, including five spatial prototypes, to
construct a synthetic training dataset. This was done to
supplement the insufficient architectural morphological
datasets and to save efforts on preprocessing the training
datasets. To complete the morphology-to-data trans-
mission, we used the convolutional approach based on
pixels to quantify the morphological features. A total of
5000 synthetic training samples served as inputs for training
the networks. The performance of the proposed method
was validated on 40 practical architectural layouts.
Compared to the ground truth from the reference book, the
modified LeNet provided an encouraging accuracy of 97%
(39/40), whereas that of the simple, fully-connected neural
network was 62.5% (25/40). Interestingly, the only mistake
of the LeNet was similar to that of some experienced ar-
chitects. Furthermore, the most possible mistakes of the
LeNet were similar to the experienced designers’ mistakes
when intuitively observing the testing samples. The LeNet
output shows similarity with the architects’ definition va-
riety on some samples. The results indicate that, by
developing a proper training dataset, the neural network
output can be highly accurate while still maintaining the
diversity of the morphological definition. The proposed
method, therefore, can serve as a basis for further archi-
tectural typo-morphology-related studies.

This work demonstrated the feasibility and power of
using the deep learning network in architectural
morphology. The finding of this work can help promote
morphological design in the future and potentially facilitate
a greater understanding of architects’ designs. Our future
work will focus on technological improvements and the
following application scenarios:

� More dimensions, such as grayscale value, can be added
to the data source to indicate volume heights and
improve the model performance.

� More information could be added to the data source
according to specific scenes. For example, the gener-
ated samples could include more details about green or
vertical spaces.

� The training targets could be modified according to
specific application scenarios, such as morphology-
www.manaraa.com
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related building performance evaluations and building
structure types, by changing the label interpretation.

� Further, the output of the neural network could be used
as one of the input parameters for generative designs
based on the rule-based system. For example, the con-
ceptual hand-drawing scripts could serve as inputs for
the trained neural network to obtain similarity compar-
isons for case-based studies. With the combination of
generative designs, the proposed method could facili-
tate the decision-making and promote further building
development.
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